We are going to learn how to create a polynomial regression and make a prediction over a future value using python. The data set have been fetched from INE (national statistics institute) , that data is the EPA ( active population survey ), that tell us the national total (Spain), both genders. 16 and over are unemployed ( in thousands ). Example data: label serie rate 0 2002T1 0 2152.8 1 2002T2 1 2103.3 2 2002T3 2 2196.0 3 2002T4 3 2232.4 4 2003T1 4 2328.5 Data CSV can be downloaded here: https://drive.google.com/file/d/1fwvAZe7lah5DX8-DDEpmfeUDYQhKcfzG/view?usp=sharing Lets see how looks that data: Fine, as we can see the data describe a curve, so its for that because we want to use a polynomial regression. To try to approximate that curve we will use a grade 2 polynomial or...
Learning about micro services with python, I found a great tool named nameko . https://www.nameko.io/ Nameko is a Python framework to build microservices that doesn't care in concrete technologies you will use within your project. To allow that microservices to work with a database, you can install into your project a wide variety of third parties, like SQLAlchemy (just like any other). To have an easy way to communicate with the database and keep track of the changes made to the models, I chose Django: I'm just learning about microservices and I want to keep focused on that. Easy to use, Django is a reliable web framework, have a powerful and well known ORM. Also using Django we will have many of the different functionalities that this framework provide. To make all this magic to work together, I developed a python package that allow you to use Django as a Nameko injected dependency: https://pypi.org/project/django-nameko-standalone/ You can found the source ...